Administration, 200 C St. SW., Washington, DC 20204, or available for inspection at the Office of the Federal Register, 800 North Capitol Street, NW., suite 700, Washington, DC 20408.

- (2) Rubber-modified poly(p-methylstyrene) basic polymers identified in paragraph (a)(2) of this section shall contain not more than 0.5 weight percent of total residual p-methylstyrene monomer, as determined by the method identified in paragraph (c)(1) of this section
- (d) Other specifications and limitations. The poly(p-methylstyrene) and rubber-modified poly(p-methylstyrene) identified in and complying with this section, when used as components of the food-contact surface of any article that is the subject of a regulation in parts 175, 176, 177, 178 and §179.45 of this chapter, shall comply with any specifications and limitations prescribed by such regulation for the article in the finished form in which it is to contact food.
- (e) Conditions of use. Poly(p-methylstyrene) basic polymers and rubber-modified poly(p-methylstyrene) basic polymers identified in paragraphs (a)(1) and (a)(2), respectively, of this section shall be used in contact with food only under conditions of use B through H set forth in table 2 of §176.170(c) of this chapter.

[48 FR 31384, July 8, 1983, as amended at 54 FR 24898, June 12, 1989; 55 FR 52989, Dec. 26, 1990]

## § 177.1637 Poly(oxy-1,2ethanediyloxycarbonyl-2,6naphthalenediylcarbonyl) resins.

Poly(oxy-1,2-ethanediyloxycarbonyl-2,6-naphthalenediylcarbonyl) resins identified in paragraph (a) of this section may be safely used as articles or components of articles intended for use in contact with food in accordance with the following conditions:

(a) *Identity*. For the purpose of this section, poly(oxy-1,2-ethanediyloxycarbonyl-2,6-naphthalenediylcarbonyl) resins (CAS Reg. No. 24968-11-4) are polymers formed by catalytic transesterification of 2,6-dimethylnaphthalene dicarboxylate with ethylene glycol followed by catalytic polycondensation.

- (b) Specifications—(1) Density. The density of poly(oxy-1,2-ethanediyloxycarbonyl-2,6-naphthalenediylcarbonyl) resins shall be between 1.33 and 1.40 grams per cubic centimeter.
- (2) Inherent viscosity. The finished food-contact article shall have a minimum inherent viscosity of 0.55 deciliter per gram in a solution of 0.1 gram of polymer in 100 milliliters of a 25/40/35 (weight/weight/weight) solution of pchlorophenol/tetrachloroethane/phenol. The viscosity is determined by Eastman Chemical Co.'s method ECD-A-AC-G-V-1-5, "Determination of Dilute Solution Viscosity of Polyesters," dated May 31, 1988, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the Office of Premarket Approval, Center for Food Safety and Applied Nutrition (HFS-215), Food and Drug Administration, 200 C St. SW., Washington, DC 20204, or may be examined at the Center for Food Safety and Applied Nutrition's Library, Food and Drug Administration, 200 C St. SW., rm. 3321, Washington, DC, or at the Office of the Federal Register, 800 North Capitol St. NW., Washington, DC.
- (c) Extraction limitations. A 0.5 millimeter (0.02 inch) thick sheet of resin when extracted with water at 121  $^{\circ}$ C (250  $^{\circ}$ F) for 2 hours shall yield total nonvolatile extractives not exceeding 2.0 micrograms per square inch of exposed resin surface.
- (d) *Conditions of use.* The finished food contact article shall be:
- (1) Used in contact only with food of Types I, II, IVB, VIA, VIB, VIIB, and VIII identified in table 1 of §176.170(c) of this chapter, under conditions of use A through H described in table 2 of §176.170(c) of this chapter; and with food of Types III, IVA, V, VIC, VIIA, and IX identified in table 1 of §176.170(c) of this chapter, under conditions of use C through H described in table 2 of §176.170(c) of this chapter; and
- (2) Identified in a manner that will differentiate the article from articles made of other polymeric resins to facilitate collection and sorting.

[61 FR 14965, Apr. 4, 1996]